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ABSTRACT The identification of archaeological remain
s via the capture of localized soil and vegetation change in aerial imagery
is a widely used technique for the prospection of new features. The near infrared (NIR) region has been shown by
environmental applications to exhibit the signs of vigour and stress better than reflectance in the visible region, and
this has led to interest in the application of digital spectral data for archaeological prospection. In this study we assess
quantitatively the application of 12 common vegetation indices to archive Compact Airborne Spectrographic Imager
digital spectral data acquisitions from January and May 2001 in a grassland environment. The indices are compared
with the true colour composite (TCC), best performing spectral band (711.2� 4.9 nm NIR) and the transcription of the
aerial photographic archive. The results of the study illustrate that the calculation of a number of vegetation indices can
assist with the identification of archaeological features in spectral data. However, the performance of the indices varies
by season and although the features detected are shown to be complementary to those detected by the TCC, few
indices out-perform the TCC in terms of feature numbers identified. It was also shown that the Normalised Difference
Vegetation Index (NDVI), the most commonly applied index in archaeological prospection to date, performed poorly in
comparison to indices such as the Modified Red Edge Simple Ratio Index, Simple Ratio Index and Modified Red Edge
Normalized Difference Vegetation Index. It is therefore recommended that the application of appropriate vegetation
indices can enhance archaeological feature detection when combined with the TCC but that the calculation of the
NDVI alone is insufficient to detect additional features. Copyright © 2012 John Wiley & Sons, Ltd.
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Introduction

Identifying remains of past human interaction with the
landscape using aerial imagery is a long held tenet of
archaeological prospection across the world. Tradition-
ally panchromatic or colour photography has been used
to identify proxy indications of anthropogenic activity.
Some of the most commonly detected proxy features
are changes in vegetation growth patterns caused by
archaeological features in the top and subsoils (Wilson,
1975;Maxwell, 1983; Brophy andCowley, 2005; Hejcman
et al., 2011). These changes are generically referred to as
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crop marks, as the high susceptibility of many arable
crops to stress means these features are frequently,
though not exclusively, observed in agricultural crop
stands.
Those working with aerial imagery in the historic

environment sector are becoming increasingly aware
of the importance of the non-visible regions of the
spectrum for the detection of archaeological features
(see Verhoeven and Doneus, 2011; Verhoeven 2012),
leading to a growing number of studies using digital
spectral data for archaeological prospection. Initially
applications focused on feature detection from satellite
imagery of predominantly bare earth conditions in
southern Europe and the Middle East (Wilkinson,
1993; Mumford and Parcak, 2002; Gheyle et al., 2004;
Beck et al., 2007; Lasaponara and Masini, 2007). More
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Table 1. Wavelengths of the vegetation bandset of all the digital
spectral data supplied for the Everleigh study area.

CASI
band

Wavelength
range
(nm)

Mid-point
wavelength

(nm)

Interpretation

1 446.2� 6.6 446.2 Blue vegetation
response

2 470.1� 6.6 470.1 Blue vegetation
response

3 490.4� 6.7 490.4 Green vegetation
response

4 550.1� 6.7 550.1 Green vegetation
maximum

5 671.1� 6.8 671.1 Red vegetation
absorption
maximum

6 683.5� 4.0 683.5 Red edge
7 700.7� 5.9 700.7 Red edge
8 711.2� 4.9 711.2 Red edge
9 721.7� 5.9 721.7 Red edge
10 751.3� 6.8 751.3 Near infrared

plateau
11 763.7� 4.0 763.7 Vegetation

reflection
12 780.9� 5.9 780.9 Water absorption
13 860.2� 6.8 860.2 Near infrared

plateau
14 880.2� 11.6 880.2 Near infrared

plateau
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recently airborne sensors have been applied success-
fully to detect direct changes associated with archaeo-
logical features in the Mediterranean region where
the fraction of soil to vegetation is low and archaeo-
logical remains are often stone built and upstanding
from the ground surface, resulting in high contrast
between background and archaeological spectral
response (Rowlands and Sarris, 2007; Pascucci et al.,
2010; Traviglia and Cottica, 2011). An increasing body
of work has illustrated the usefulness of airborne
spectral data in temperate zones such as the UK
(Donoghue and Shennan, 1988; Winterbottom and
Dawson, 2005; Powlesland et al., 2006; Challis et al.,
2009; Bennett et al., 2011; Aqdus et al., 2012). In contrast
to the Mediterranean examples, archaeological features
in the UK are more often detected through changes in
growth patterns caused to the overlying vegetation
rather than direct observations of soil. However,
analysis of spectral imagery to date has largely ignored
the vegetation indices used in environmental studies,
focusing instead on the assessment of true and false
colour imagery. In a handful of studies the Normalised
Difference Vegetation Index (NDVI) (Rouse et al., 1973)
has been calculated and noted to be of use for the
detection of features (Winterbottom and Dawson,
2005; Challis et al., 2009; Aqdus et al., 2012), however,
the application of this index has not been justified with
regard to the aims of the research. The potential of
vegetation indices in general to highlight parameters
such as plant quality, vigour or stress that are related
to localized differences caused by underlying anthropo-
genic features has been illustrated by work undertaken
by Traviglia (2005, 2008) in a Mediterranean context,
but has yet to be explored for temperate zones.
This paper presents the results of a quantitative

comparison of 12 indices selected due to their proven
ability to illustrate biophysical parameters of vegetation,
for an area of previously recorded archaeological
features on the calcareous grassland of the Salisbury
Plain, Wiltshire (latitude 51.27, longitude �1.74). In
doing so it provides the first assessment of a range of
vegetation indices for archaeological prospection in a
temperate environment. The aim of this research was
to conduct a quantitative comparison of the detection
of archaeological features using vegetation indices and
relate these results to the feature detection rates from a
true colour composite (TCC), the single best performing
band of the spectral data and the archive of archaeo-
logical features as recorded from aerial photography in
the Wiltshire Historic Environment Record (HER).
While the record held in the HER is a collection of the
evidence from many aerial photographs over many
years and therefore cannot be considered directly
Copyright © 2012 John Wiley & Sons, Ltd.
comparable to a single spectral collection, it provides
a useful baseline to assess the effectiveness of any
technique compared with the cumulative information
from aerial photography. The evaluation of relative
success of these indices when detecting archaeological
features in the study area will inform future work.
Method

Two archive airborne multispectral datasets collected
using the ITRES Compact Airborne Spectrographic
Imager (CASI) in January and May 2001 were used
for this study. The CASI data were collected in 14
bands ranging from 440 nm to 891 nm as shown in
Table 1 and had a ground resolution of 1.5m. The
data were geometrically and atmospherically corrected
by the Environment Agency of England and Wales
(henceforth EA) prior to acquisition by this project
and no further preprocessing was applied.
Over 150 vegetation indices have been published in

remote sensing literature, many based on the premise
that algebraic combination of spectral bands can
highlight useful attributes of vegetation health and
growth better than the study of either individual bands
or true/false colour RGB images (Ray, 1994). As so little
work has been done to establish the use of vegetation
Archaeol. Prospect. 19, 209–218 (2012)
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212 R. Bennett et al.
indices for prospection of biophysical parameters
relating to archaeological features, guidance was taken
from the selection of indices made by Asner (2008). The
indices that are potentially appropriate to identifying
vegetation stress caused by archaeological features can
be grouped into five categories: broadband greenness,
Figure 1. Examples of imagery used in the study: (a) May, TCC; (b) May, SRI; (c
This figure is available in colour online at wileyonlinelibrary.com/journal/arp.

Copyright © 2012 John Wiley & Sons, Ltd.
narrowband greenness, light use efficiency, dry or
senescent carbon and leaf pigments, as detailed in
Table 2. All indices are given in full in Table 2, but are
referred to by their acronyms in the text.
In previous work by the authors, each band of

the CASI data was assessed for its ability to detect
) May, NDVI; (d) January, TCC; (e) January, MRESRI; (d) January, NDVI

Archaeol. Prospect. 19, 209–218 (2012
DOI: 10.1002/arp
.
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Figure 3. Relative feature detection rates from the vegetation indices
applied to the May spectral data.

213Application of Vegetation Indices in Grass-dominated Environments
archaeological features, and the near infrared (NIR)
range of 711.2� 4.9 nm (band 8) was shown to be the
most useful for feature detection (Bennett, 2012). The
vegetation indices were calculated using ENVI 4.7 with
the selection of bands that is standard to the software,
while the TCC was composed of bands 5 (~671nm), 4
(~550nm) and 2 (~490nm). Archaeological features
were then mapped as a vector layer indicating the
location and extent from each image following National
Mapping Programme protocol for aerial photograph
transcription (English Heritage, 2006) at a scale of
1:4000 or less. Examples of imagery are shown in
Figure 1. Length was automatically calculated for each
vector transcribed and, on comparison of the digitized
vector data with the Wiltshire HER record, a maximum
detected length from each feature was calculated. The
feature lengths recorded by each visualization technique
were then converted to a percentage of the maximum
detected by anymethod. Thismeasurewas termed aver-
age percentage feature length (APFL) of all features in a
given visualization. Thus both binary visibility (present
or not present) and percentage recovery were measured
as an indication of the detection rate of archaeological
features in each visualization.
Results

The number of features mapped from each of the
vegetation indices for both spectral datasets are shown
in Figures 2 (January) and 3 (May). The figures are
illustrated alongside the number of known archaeo-
logical features in the study area (Wiltshire HER) and
the number mapped from the TCC image and most
sensitive single band (ca. 711 nm). To illustrate the
Figure 2. Relative feature detection rates from the vegetation indices
applied to the January spectral data.

Copyright © 2012 John Wiley & Sons, Ltd.
depiction of archaeological features typical in this
environment, a field system of lynchets and banks that
runs through three different land-use types is shown
in Figure 4.
The clearest result of the study is that the single

NIR band of the spectral data outperformed both
the TCC and vegetation indices in the January and
May data; illustrating the heightened sensitivity of
the NIR to changes in plant growth in this environ-
ment. This is also highlighted by the fact that in
both datasets the TCC recovered fewer of the fea-
tures known from the aerial photographic archive
than the best performing NIR band. It was also
shown that a number of vegetation indices can be
used to detect archaeological features in the grass
dominated environment of the study area. The
generally lower feature recovery in the spectral data
is unsurprising given its lower spatial resolution
when compared with the aerial photography and
the fact that the HER archive covers more than
50 yr of data acquisitions at different times of year
and under different crop conditions.
The analysis shows that the relative performance of

the vegetation indices in comparison with the TCC
and single best band varies by season. For the January
data, both the MRESRI and the MRENDVI were seen
to provide better binary and APFL detection of
features than the TCC (Figures 2 and 5). This was
not the case for the May data where no index
outperformed the TCC in terms of number of features
detected (Figure 3), but the MRESRI and SRI had a
slightly higher APFL (Figure 6). This concurs with the
results of Verhoeven et al. (2009), who tested the
performance of the SRI created using NIR photog-
raphy. Of particular note in both datasets is the
relatively poor performance of the NDVI, ranking
Archaeol. Prospect. 19, 209–218 (2012)
DOI: 10.1002/arp



Figure 4. An extensive field system, running through three types of land use (from north to south: scheduled monument (grazed), heavily ploughed
field, ungrazed grassland) as depicted in the vegetation indices.
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Figure 5. Average percentage feature length detection rates from
the vegetation indices applied to the January spectral data.

215Application of Vegetation Indices in Grass-dominated Environments
seventh in January and ninth in May out of all the
indices evaluated.
A comparison was made to see if the same features

were being detected in the vegetation indices and
the TCC (Table 3). This exercise demonstrated the
complementarity of the different visualization tech-
niques showing that the top performing vegetation
indices recorded a significant number of extra features
to the TCC of the same data. For example in the May
data when the number of features recovered from the
TCC, MRESRI and SRI was identical (40 features), the
vegetation indices allowed the detection of at least
15 extra features that were not detectable in the TCC.
The results from both the January and May data
indicate that the use of the best performing vegetation
index can lead to a 30–49% increase in feature
detection over the TCC alone and a 24–30% increase
over the best performing single band.
To summarize the usefulness of each of the indices

more clearly with respect to the factors assessed,
Figure 6. Average percentage feature length detection rates from
the vegetation indices applied to the May spectral data.

Copyright © 2012 John Wiley & Sons, Ltd.
a ranked scoring system has been used to combine
total number of features detected and level of
complementarity to the TCC and best performing
single band (Table 4).
Discussion

The results of a quantitative comparison of 12 indices
selected for their empirical basis and applied to archive
CASI spectral data showed that none of the indices gave
detection rates comparable to those attained from tran-
scription of the aerial photographic archive. Variation
in feature detection rates relating to season was
illustrated in this study, both in the TCC and vegetation
indices, with more features being detectable in the Janu-
ary data than the May. Assessing the causes of this
observed difference is complex due to the lack of
contemporary ground observations, but it is suggested
that the shallow root system of hardy vegetation such
as grass is less likely to exhibit stress or variation
associated with underlying archaeological features in
its peak growing season (May) under non-drought
conditions (such as were captured in the data used for
this study).
The best performing indices varied across the

spectral datasets of different dates, with only the
MRESRI narrowband greenness index consistently
performing well in this grassland environment. The
study also illustrated that binary feature counts alone
do not provide the best assessment of the usefulness
of a particular index for archaeological prospection,
as this measure does not quantify differences in the
average percentage length of a feature that can be
detected or the level of complementarity to the TCC
in terms of additional features detected. An awareness
of these factors, along with the quantitative compari-
son, will enable historic environment professionals
to improve the application of vegetation indices. In
summary, the best performing indices allowed the
detection of a number of features that were not
detectable in the TCC/best performing single band
and therefore should be considered as complementary
visualizations for archaeological feature detection.
Although it must be emphasized that the NDVI is a

formula that can be applied to a number of band
combinations in multispectral data and therefore there
is no “standard” NDVI calculation, this study showed
that the NDVI automatically calculated for these data
by ENVI, was in fact one of the worst performing indi-
ces for archaeological feature detection. This is due to
its use of a broad NIR band designed for satellite data
when the spectral resolution of the airborne data lends
Archaeol. Prospect. 19, 209–218 (2012)
DOI: 10.1002/arp



Table 3. Comparison of complementarity or additional features detected by the vegetation indices over the TCC and best performing NIR
band.

Vegetation
index

Number of additional features
when compared with

Increase in features detected
when used as a secondary
source to the TCC (%)

Increase in features detected
when used as a secondary
source to the NIR band (%)

January
NIR band

January
TCC

May
NIR band

May
TCC

January May January May

MRESRI 14 22 11 15 49 38 25 24
MRENDVI 9 16 11 12 36 30 16 24
SIPI 7 15 14 15 33 38 13 31
ARI2 7 14 11 14 31 35 13 24
RENDVI 6 10 10 12 22 30 11 22
ARI1 6 10 10 11 22 28 11 22
SRI 6 9 13 16 20 40 11 29
ARVI 5 8 8 9 18 23 9 18
NDVI 5 8 9 9 18 23 9 20
EVI 1 2 0 0 4 0 2 0
PSRI 2 2 0 0 4 0 4 0
REPI 0 0 4 3 0 8 0 9

216 R. Bennett et al.
itself to more refined measures such as MRESRI and
RENDVI. While it is clear that some indices can be
used to detect archaeological features successfully,
a lack of understanding of both spectral sensitivity
and resolution often prevents the most appropriate
indices from being applied.
Conclusions

This study provides the first quantitative analysis of
vegetation indices derived from remotely sensed data
in a grass-dominated environment. It was shown
that a number of vegetation indices, particularly those
in the narrow-band greenness category, are effective
in detecting archaeological features. With hundreds
of vegetation indices developed for environmental
purposes, this study cannot be considered exhaustive,
but it does indicate that appropriate selection of
Table 4. Ranking of vegetation indices based on number of features a

January number
of features

January TCC
complementarity

January NIR
complementarity

Janu
final s

MRESRI 12 12 12 36
MRENDVI 11 11 11 33
SIPI 9 10 9 28
ARI2 7 9 9 25
ARI1 9 7 7 23
RENDVI 7 7 7 21
SRI 5 6 7 18
NDVI 5 4 4 13
ARVI 4 4 4 12
PSRI 3 2 3 8
EVI 2 2 2 6
REPI 1 0 1 2

Copyright © 2012 John Wiley & Sons, Ltd.
vegetation indices (based on spectral sensitivity of
the target and resolution of the sensor) can enhance
archaeological prospection from the use of the TCC
composite or NIR band alone.
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