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Introduction
The increasing availability of multi-dimensional remote-sensing data covering large
geographical areas is generating a new wave of landscape-scale research that promises to be as
revolutionary as the application of aerial photographic survey during the twentieth century.
Data are becoming available to historic environment professionals at higher resolution,
greater frequency of acquisition and lower cost than ever before. To take advantage of this
explosion of data, however, a paradigm change is needed in the methods used routinely
to evaluate aerial imagery and interpret archaeological evidence. Central to this is a
fuller engagement with computer-aided methods of feature detection as a viable way to
analyse airborne and satellite data. Embracing the new generation of vast datasets requires
reassessment of established workflows and greater understanding of the different types of
information that may be generated using computer-aided methods.

Automated and semi-automated image analysis is routine in fields such as environmental
remote sensing, where it underpins analysis of extensive datasets (see Lasaponara & Masini
2012 for a review of these techniques). Aspects of these developments have made their
way into archaeological applications, but they remain rarely used and are often viewed
with suspicion. It is important therefore to outline the status quo and identify the key
issues in debates that have mainly played out at conferences and steering groups but
are seldom committed to print. There are difficulties in the creation of geographically
extensive, systematic datasets for heritage management and research from high-volume data
derived from airborne laser scanning (ALS), satellite imagery and airborne digital spectral
sensors. Yet fuller exploitation of computer assisted techniques can exponentially increase the
rapidity with which initial historic environment datasets can be created, moving beyond the
‘human-timescales’ within which most archaeological survey is undertaken (i.e. ‘manual’
analysis). This requires recognition of the fundamentally different but complimentary
types of information that the two approaches produce, and assessment of their value
and contribution as part of broader research objectives. Throughout we use the term
‘computer vision’ to define all methods by which imagery can be processed, analysed and
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understood using computer-generated algorithms (including classifications), with reference
to the electronic replication of the abilities of human ocular perception (Sonka et al. 2008).

Discussion of computer vision and pattern detection techniques in archaeology has often
been from polarised positions that are as much about belief in the value of a particular
type of output as a rational assessment of the contribution of new techniques. There is
little doubt that the rhetoric has softened in recent years, thanks in part to the increasingly
mainstream use of digital images rendered from ALS data, but also to a number of considered
and rigorous applications of automated techniques (e.g De Laet et al. 2007; Trier & Pilø
2012; Verhagen & Drăguţ 2012; Lambers & Zingman 2013). There is, however, still
vocal opposition within historic environment circles to any type of computer-generated
detection process, stemming from a view that computer vision techniques are no substitute
for manual interpretation (Parcak 2009; Hanson 2010). While recognising the legitimacy of
some concerns, we argue that most objections overlook the potential role of such techniques
as complementary to, rather than a direct substitute for, traditional methods.

A twentieth-century approach to a twenty-first-century problem
A sound and systematic knowledge base is fundamental to effective archaeological research
and heritage management (Horne 2009; Cowley & Huld Sigurðardóttir 2011). Globally,
however, the historic environment is poorly recorded both in terms of spatial coverage and
quality of information. In parts of Europe with long traditions of inventory going back
into the nineteenth century, analysis of the contents and structure of the records quickly
illustrates the unsystematic nature of data collection and record compilation, alongside
many inherent biases (Cowley 2011; Risbøl et al. 2013). While techniques such as aerial
photographic analysis have revolutionised archaeological knowledge in some areas (e.g.
Gojda 2011), these depend on manual and time-consuming assessment processes to create
baseline records.

The ability of historic environment professionals to engage with large datasets is impeded
by an overwhelming adherence to an entirely manual prospection and interpretation
approach, as traditionally applied to aerial photographic interpretation (Wilson 2000;
Cowley et al. 2013). While this can produce detailed, research-engaged interpretations
of the data, it is also time consuming and requires heavy commitment of resources. Thus
the ground-breaking English Heritage National Mapping Programme (Horne 2009), which
draws principally on aerial photographs, achieves an average coverage rate of 1km2 per
person/day. With a variable number of staff (averaging 15–20 for long periods), the
programme has examined about 52 000km2 of English countryside since its inception
in the 1990s, locating over 100 000 archaeological sites. This project has created records
that underpin effective heritage management and support better understanding of the past,
but its exclusively manual approach requires significant resources. With accelerating rates of
landscape change and the limited resourcing of cultural heritage globally, traditional methods
of remote landscape survey are a financially unsustainable and painfully inefficient way to
create the spatially extensive, systematic datasets required for effective resource management.

Additional problems are encountered when traditional methods are applied to new
datasets. Multiple methods of visualisation are often required to render archaeological
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features from topographic data (Bennett et al. 2012), while modern air- and spaceborne
spectral systems have such high spectral dimensionality that a single survey results in
hundreds of images to be assessed. Extracting relevant content from these images exceeds
what is practically possible for a traditional manual approach and moreover this methodology
fails to engage with the depth of content that such data has to offer. For example, the
additional spectral response information could be critical to understanding how and why
features of archaeological interest manifest in the imagery (Beck 2011; Bennett et al.
2011; Verhoeven 2012). There is a fundamental tension generated by the inability of
traditional manual approaches to enable archaeological interpretation of extensive and
complex remote sensing data. The pressure to break from tradition and explore other
methods has undoubtedly contributed to the polarised debate on the role of automatic
feature identification and computer vision in archaeological landscape analysis. However,
there is potential for a middle ground that recognises the role of the expert in creating reliable
interpretations, but looks to the development of analytical frameworks that are appropriate
to the emergent datasets.

The role of the expert
A distinct advantage of manual interpretation is the ability to identify and categorise the
wide range of direct and proxy features that are of potential archaeological significance, and
skilled archaeological interpreters are crucial to the quality of feature interpretation (Palmer
2011; Halliday 2013). Thus, many believe that any form of semi-automated assessment is of
little worth in comparison to knowledge-based expert interpretation. Parcak (2009: 110–11)
promotes this view, arguing that computers simply do not have the ability of the human eye
and mind to detect patterns that might denote traces of past human activity and separate
them from geological and recent disturbances. The sophisticated use of image processing and
artefact recognition in a wide range of applications from number plate and face recognition
to medical imaging and military reconnaissance would undermine this view, but it finds
some support in the history of automated detection techniques in archaeology. New remote
sensing technologies for archaeological prospection have had to rely on data and image
processing expertise from other fields. This has undeniably led to poor communication of
purpose and over-enthusiastic claims of success, particularly as the type of features sought
by archaeologists are categorically different from those the environmental and geological
remote-sensing communities are trained to observe. Detecting one feature or one class of
feature in one type of environment is not the same as providing both identification and
interpretation of features across a landscape. This has fed criticism of automated detection
focusing on high rates of ‘false positives’ (Hanson 2010), and generated fears that expertise
in archaeological interpretation is undervalued.

The importance of interpretation based on the cognitive abilities, expertise and
experience of the interpreter should not be overlooked. The complex mix of observation,
feature identification, classification, interpretation and narrative are virtually impossible to
disambiguate, and it is important to recognise that they are rarely examined or held to acc-
ount (Halliday 2013). Deconstructing these often subconscious processes can help us to
better understand the cognitive processes and reasoning underlying traditional approaches.
C© Antiquity Publications Ltd.
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Archaeological interpretations are heavily conditioned by varying observational abilities,
experience and knowledge. Our innate ability to identify patterns, which is a strength in
analysing visual data, can sometimes mislead. There is the widely recognised tendency to
‘complete the circle’ where features are ‘fitted’ to the template of a familiar shape. Expectation
and our existing knowledge-base will bias what we see, or do not see, and how we interpret
it (Figure 1): “give half a dozen people the same information . . . you get half a dozen
different interpretations, all equally valid and probably not even mutually contradictory in
any significant way, but each of them will bear the style of the individual interpreter” (Hill
2009: 3). Multiplicity of interpretations is inevitable and yet often undocumented, leading
to a tendency to view an expert transcription as the paramount and only interpretation of
the data.

However, experienced interpreters would admit that the information they derive is heavily
biased towards their expectations and knowledge, with the risk of missing or dismissing
features (Halliday 2013). If one subscribes even partially to this conditional and contingent
view of interpretation, then it seems unwise to argue for the primacy or exclusivity of human
or manual processes with no room for computer vision techniques.

A computer algorithm designed to extract features with specific attributes from data is
not as flexible as a human observer, and is therefore not able to filter and rationalise a mass
of visual information. While the algorithm is not flexible, it removes a major source of bias
in detection and ensures that all features within the set criteria will be detected. The value of
information extracted will depend on the coherence of the enquiry, but it will be systematic
and can be applied across large datasets, and, moreover, with good documentation it can be
replicated. Such an approach does not, however, provide archaeological interpretations. This
is an important point because some critics of automated and computer vision approaches
have conflated feature detection and archaeological interpretation, largely because in a
traditional manual workflow they are invariably intertwined. With the systematic application
of explicit algorithms to identify features, a major source of bias in observation and detection
is offset, with the potential to flag up features that might have been dismissed by the observer.
Moreover, a growing number of researchers are developing analyses in an iterative process
which takes account of field observation and evaluation to assess and refine the algorithms
(Trier & Pilø 2012; Lambers & Zingman 2013).

Recognising the value of different approaches
Critique of manual and semi-automated methods for feature detection is hampered by
the fact that the two methods result in different products and therefore cannot easily be
compared. This can be demonstrated by the results of two aerial prospection projects with
different methodologies (Table 1). The coverage rate of the Baden-Württemberg project
is impressive compared to the NMP approach, but the results are considered ‘potential
archaeological features’ that require verification. The Baden-Württemberg product is seen
as a baseline, a segmented image highlighting areas of potential archaeological features based
on predetermined rules for subsequent verification. The NMP approach adds to feature
detection a level of archaeological interpretation that allows for assessment of significance
and meaning; in doing so it also rejects without record those features deemed insufficiently
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Figure 1. The cropmarks recorded on an aerial photograph (left) at Lagg in central Scotland illustrate the influence of
experience and expectation on feature identification and interpretation. Without dwelling on the details of this example (see
Brophy & Cowley 2005: 18–20) the mapping on the top right was driven by a desire to find Neolithic monuments, failed
to consider the size of the monument, and was based on the interpreter’s (D. Cowley) limited experience. The mapping on
the bottom right was suggested by a colleague, and drew on a broader view of its context, less hide-bound by expectation and
a desire to fill a hole in the distribution of Neolithic long barrows. This depiction would be interpreted as an unusual first
millennium AD square barrow with an ‘avenue’ of pits, very different from the long barrow interpretation. Experienced (and
reflective) interpreters will admit to such issues in their own work (e.g. Palmer 2011; Halliday 2013), and these show that
an insistence on the primacy of the eye/brain combination for feature identification is unwise. Extract of A72255: Crown
Copyright RCAHMS.

intelligible to be classed as anthropogenic in origin. Conversely, as automated processes
identify everything that falls within the ruleset, there will be a high number of ‘false
positives’ or features that fit the rules but are not archaeological (Trier & Pilø 2012).

Fundamentally, the two different approaches to image analysis should not be considered
alternatives but rather complementary parts of an overall image assessment strategy. The idea
of multi-scale analysis is not new to archaeology, but only in Norway have semi-automated
detection techniques been incorporated as part of the strategic approach (Trier et al. 2009,
Trier & Pilø 2012). It is our contention that without the appropriate incorporation of
computer vision techniques we will fail to assess even a fraction of the data available to
C© Antiquity Publications Ltd.
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Table 1. Details of two aerial prospection projects, summarised from Cowley et al. (2013).

English Heritage National Mapping Baden-Württemberg ALS
Programme (NMP) Mapping, Germany

Aerial resource used Predominantly aerial photographs,
latterly some ALS

ALS project

Area covered 52 000km2 35 000km2

Personnel Multiple operators for each project
area

Single operator

Method Manual classification and
interpretation based on
topographic, soil and vegetation
contrast

Semi-automated classification of
digital terrain models based on
microtopographic variation (LRM),
with manual verification

Timescale 20 years (since 1992/93) 6 years
Number of sites Over 100 000 sites 600 000 sites (estimated)

us. Even for well-resourced nations with an established body of professionals trained in the
field, current methods of interpretation are a major limitation on the potential exploitation
of new imagery. For those without an infrastructure for image interpretation and cultural
resource management the situation will prove even more acute.

Developing applications
Despite a steady increase in the sophistication and application of detection techniques in
sectors as diverse as medical imaging, security, materials science and robotics, the techniques
that have been tentatively used in archaeological contexts to date are frequently too simplistic
to cope with the subtleties of archaeological feature detection. Lasaponara and Masini (2012)
provide a very brief review of a handful of projects that have used computer detection
techniques for classification, and while pointing out the inconclusive nature of the results,
fail to observe that while the wholesale importation of techniques from the environmental
sciences might be useful for monitoring the expression of known sites, it is inappropriate for
the identification of archaeological remains, especially those that are previously undetected.

The over-simplicity and inflexibility of the modes of automated or semi-automated
detection selected for analysis mean they are poorly suited to the diversity in shape, size,
spectral and topographic properties of the features we categorise as archaeological (De Laet
et al. 2007; Grøn et al. 2011: 2030). Embedded in this problem is the difficulty of precisely
defining what an archaeological feature is. The truth of the matter is that regardless of
the level of sophistication, a single detection algorithm could never adequately account
for the range of feature types, let alone incorporate obfuscating factors such as plough
damage, geological background variations and vegetation cover that significantly alter the
appearance of a feature from a given normal descriptor. Picking apart these factors and
providing a reasoned archaeological interpretation supported by observation and knowledge
is a valuable specialist skill that computer detection methods, however sophisticated, will
ultimately fail to replace.
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This is why, far from being made redundant by automated techniques, skilled interpreters
are vital to any computer vision process. The expert role is not simply to annotate
training images or validate results, but as an integral part of the feature engineering
process (see Domingos 2012 for discussion of the critical factors relating to the success
of machine learning applications). To do this there has to be willingness to engage with
both the practical and theoretical challenges of explaining and replicating human visual
interpretation processes. With respect to openness of method, objectivity and repeatability
of interpretations, asking ‘what are we looking for?’ and justifying the response can only be
seen as a positive demonstration of critical thinking.

In our opinion the development of computer vision techniques for the analysis of airborne
remote-sensing data is a high priority, and restructuring assessment methods and engagement
in research are vital to providing assessment and protection of the historic environment.
We identify the following areas for development, and although we recognise that some will
require significant investment, we suggest them as the basis of a road-map to discipline-
specific computer vision approaches that will pay dividends in the longer term.

1) A credible benchmark, based on Big Research

Large scale, high quality, systematic and discipline-aware research is required into the
application of computer vision techniques to image analysis. This will need to incorporate
robust and repeatable workflows that integrate computer vision and manual methods.

The creation of benchmark material for the evaluation of algorithms from an international
range of archaeological and environmental contexts using a variety of data types is
fundamental. Expert interpretations of the material can provide training and validation
datasets, and support better understanding of why and how features are identified. Projects
such as the PASCAL Object Recognition Database (PASCAL & PASCAL2 2013) provide
exemplars for this type of work.

Key to the success of computer applications will be clearer definitions of archaeological
features in various datasets. Although some work is already being undertaken for
hyperspectral data under the DART project (Beck 2011), the knowledge-base needs to
be expanded significantly. That can only practically be achieved via benchmarking and
timely observations of the physical and chemical properties of features observed remotely.
A clear distinction should be made between contrast detection and feature identification.

2) Improved protocols for recording pre-processing, data categorisation and metadata

Acceptance of data pre-processing as a beneficial first step for some archaeological analysis
is critical to more mainstream adoption of semi-automated techniques. This includes
masking high-contrast features (roads and buildings), high pass and low pass filters, local
relief models to filter low relief and segmentation based on land cover. These techniques
help to reduce large-scale variation in an image or model, and have been shown to help
with the visualisation and detection of generally subtle archaeological traces. Metadata
is needed to explain and qualify processing steps to improve the intelligibility of and
confidence in the results of semi-automated techniques. To assist with standardisation, a
categorisation system of different levels of processing (such as is common in environmental
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remote-sensing applications) should be established and included as metadata in all feature
assessments. It would also be helpful to modify the language of feature detection to reflect
the level of interpretation (i.e. potential archaeological feature or suspected archaeological
anomaly).

Feature recording protocols should be expanded to include complementary environmental
data such as land use, land management strategies, dates of feature visibility and
proportion of known feature visible. If systematically recorded, this ancillary information
will assist with the definition of archaeological features and help to explain gaps in
identification.

3) Incorporation of multi-sensor data

The benefits of multi-sensor survey could be enhanced if computer vision techniques were
used to combine different data from common geospatial locations, addressing a tendency
to consider only one data source for computation, therefore limiting feature detection.
The strength of computer-aided analysis of multi-sensor data has yet to be explored in any
depth, and incorporation of tools such as decision tree analysis could begin to allow strategic
targeting of attributes within multiple datasets that represent archaeological features. This
is an area where computer vision techniques may have the most to contribute.

4) Innovative manual interpretation methods

Finally, in the interim, if manual detection is the best method we have to identify features of
interest, some thought should be given to improving its rapidity and coverage. Some recent
experimentation in the use of ‘crowd-sourced’ interpretations of ALS-derived visualisations
is described by Duckers (2013). Information gathered could also include non-archaeological
attributes like land use and ‘noise’ such as vegetation overlaying features and shadows, with
the potential to derive a breadth of image information.
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